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Insulin-like Growth Factor-1 Protects
Peroxynitrite-Induced Cell Death by Preventing
Cytochrome c-Induced Caspase-3 Activation
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Abstract We investigated the effect of IGF-1 on cell death induced by peroxynitrite in human neuroblastoma SH-
SY5Y cells. Exposure of the cells to 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, caused cytochrome ¢
release from the mitochondria, caspase-3-like activation, and cell death. Pre-incubation of the cells with the caspase-3
inhibitor partially prevented SIN-1-induced cell death. Simultaneous addition of IGF-1 reduced SIN-1-induced caspase-
3-like activation and cell death, whereas IGF-1 failed to reduce the release of cytochrome c. IGF-1 increased Akt
phosphorylation, and Akt phosphorylation was inhibited by wortmannin, an inhibitor of phosphatidylinositol 3-kinase.
In addition, wortmannin prevented IGF-1-evoked inhibition of cell death and caspase-3-like activation. In a cell-free
system, addition of cytochrome cto cytosolic fraction resulted in caspase-3-like activation. The activation was reduced
when the cytosolic fraction prepared from IGF-1-treated cells was used. These results suggest that IGF-1 protects
peroxynitrite-induced cell death downstream of cytochrome c release through the inhibition of caspase-3-like

activation. J. Cell. Biochem. 84: 708-716, 2002. © 2002 Wiley-Liss, Inc.
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Insulin-like growth factor-1 (IGF-1) is a poly-
peptide hormone essential for the development
of nervous system [Zackenfels et al., 1995]. IGF-
1 is a potent mitogen and survival factor. For
instance, IGF-1 promotes survival of cerebellar
granule neurons against low potassium or
serum deprivation [D’Mello et al., 1993], and
prevents neuronal cell death induced by amy-
loid B-protein [Dore et al., 1997] or oxidative
stress such as nitric oxide and hydrogen per-
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oxide [Tamataniet al., 1998a; Heck et al., 1999].
Although IGF-1 has gained increasing atten-
tion for the treatment of neurodegenerative
disorders, the precise mechanism by which IGF-
1 prevents cell death is not fully understood.
Phosphatidylinositol 3-kinase (PI3-kinase) is
reported to be involved in IGF-1-mediated pre-
vention of cell death [Yao and Cooper, 1995;
Parrizas et al., 1997]. One of the downstream
target molecules of PI3-kinase is a serine/
threonine kinase, Akt [Dudek et al., 1997].

Extensive studies indicate that aspartate-
specific cysteine proteases (caspases) are effec-
tors of apoptosis [Yuan et al., 1993; Alnemri
et al., 1996; Thornberry and Lazebnik, 1998].
Among them, caspase-3 plays a major role in
apoptosis of neurons [Kuida et al., 1996]. Trans-
location of cytochrome ¢ from intermembrane
space of mitochondria to cytoplasm is a crucial
step in apoptosis [Liu et al., 1996; Kluck et al.,
1997; Yang et al., 1997; Zou et al., 1997]. Cyto-
chrome c released from the mitochondria forms
a complex with Apaf-1, and activates caspase-9,
resulting in caspase-3 activation.
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Nitric oxide (NO) is synthesized from L-
arginine by NO synthase and mediates a num-
ber of physiological processes [McDonald and
Murad, 1995]. In the central nervous system,
physiological level of NO acts as an intercellular
messenger [Dawson and Dawson, 1998]. How-
ever, NO hasbeen shown to induce neuronal cell
death when produced in excess [Tadecola, 1997].
Cytotoxicity is associated with highly reactive
peroxynitrite formed by the reaction of NO with
superoxide [Beckman et al., 1990]. Peroxyni-
trite is involved in a wide range of pathological
processes including brain ischemia and neuro-
degeneration such as Alzheimer’s disease and
Parkinson’s disease [Ischiropoulos, 1998], and
is also reported to cause neuronal cell death
[Bonfoco et al., 1995].

In the present study, we examined the role of
IGF-1 on peroxynitrite-induced cell death and
evaluated the relationship among cytochrome c
release, caspase activation, and cell death in
human neuroblastoma SH-SY5Y cells. We re-
port here that IGF-1 inhibited caspase-3 activa-
tion and cell death but failed to prevent
cytochrome c release induced by peroxynitrite.
These findings suggest that IGF-1 protects
peroxynitrite-induced cell death downstream
of cytochrome c release.

MATERIALS AND METHODS
Materials

RPMI1640 medium, IGF-1, wortmannin,
LY294002, and horse-heart cytochrome ¢ were
purchased from Sigma (St. Louis, MO). Benzyl-
oxycarbonyl- Asp-Glu-Val-Asp-fluoromethylke-
tone (D-FMK) was from Calbiochem (La
Jolla, CA). Acetyl-Asp-Glu-Val-Asp-7-amido-4-
methylcoumarin (D-MCA), and benzyloxy-
carbonyl- Val-Ala-Asp-fluoromethylketone (V-
FMK) were from Peptide Institute (Osaka,
Japan). 3-morpholinosydnonimine (SIN-1) was
from Dojindo Laboratories, Inc. (Kumamoto,
Japan). Anti-cytochrome ¢ antibody was from
R&D (Minneapolis, MN). Anti-phospho-Akt
and anti-cleaved caspase-3 (D175) antibodies
were from New England Biolabs (Beverly,
CA). Anti-Bcl-2 antibody was from DAKO
(Copenhagen, Denmark). Other chemicals used
were commercially available and of analytical
grade.

Cell Culture and Treatment

SH-SY5Y cell line was a gift from Dr.
Wolfgang Sadee (University of California,

San Francisco). The cells were cultured in
RPMI1640 supplemented with 10% fetal bovine
serum containing 100 pg/ml streptomyecin,
100 IU/ml penicillin, and 1 pl/ml amphotericin
B. Cells were plated on dishes at 5 x 10* cells/
cm? and incubated for 24 h. The medium was
changed to serum-free medium 30 min before
the treatments with various reagents. Wort-
mannin, LY294002, and PD98059 were dis-
solved in dimethyl sulfoxide (DMSO) and added
to the media (the solvent was finally diluted to
0.2%). When reagents dissolved in DMSO were
used, equal volume of the solvent was added to
the control media. Cell death was evaluated
using 0.4% trypan blue exclusion test. The per-
centage of cell death was expressed as the
percentage of stained cells as a fraction of the
total number of cells. Approximately 1,000 cells
were counted per group.

Analysis of DNA Fragmentation

DNA was isolated and purified using Apop-
tosis Ladder Detection Kit (Wako, Osaka,
Japan) and subjected to electrophoresis in
1.5% agarose gels. DNA was visualized by
ethidium bromide.

Preparation of Cytosolic Fractions

Cytosolic fractions were prepared as des-
cribed [Liu et al., 1996]. Briefly, cells were sus-
pended in 20 mM HEPES buffer (pH 7.4)
containing 10 mM KCl, 1.5 mM MgCl,, 1 mM
EDTA, 1 mM EGTA, 1 mM DTT, 250 mM
sucrose, 1 mM phenylmethylsulfonyl fluoride,
and 1 ug/ml aprotinin, and disrupted with
a Dounce homogenizer. The supernatant at
100,000g for 1 h was used as cytosolic fractions.

Immunoblotting

To prepare total cell lysate, cells were lysed in
62.5 mM Tris-HCI (pH 6.8) buffer containing 2%
sodium dodecyl sulfate (SDS), 1% glycerol,
50 mM dithiothreitol, and 0.1% bromphenol
blue. For analysis of cytochrome c release, cyto-
solic fraction was prepared as described above.
Proteins were separated by SDS—polyacryla-
mide gel electrophoresis (SDS—PAGE), and
transferred to polyvinylidene difluoride mem-
branes (Millipore, Bedford). The membranes
were blocked with 20 mM Tris buffer (pH 7.6)
containing 137 mM NaCl, 5% dry milk and
0.1% Tween-20 (TBST) for 1 h at room tem-
perature, and probed with antibodies to cyto-
chrome c¢ (1:2,000), phospho-Akt (1:2,000),
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cleaved caspase-3 (1:1,000), or Bel-2 (1:500)
overnight at 4°C in TBST. After washing three
times with TBST, the membranes were probed
with a horseradish peroxidase-linked antibody
for 1 h at room temperature, and visualized by
an enhanced chemiluminescence system
(Amersham, Arlington Heights, IL, USA). In
some experiments, the membranes were strip-
ped and reprobed with other antibodies accord-
ing to the manufacturer’s instructions (Pierce,
Rockford, IL).

Caspase-3-Like Activity Assay

Cells were lysed for 20 min in 20 mM Tris
buffer (pH 7.4) containing 1% Triton X-100,
150 mM NaCl, 1 mM DTT, 5 mM EDTA, 5 mM
EGTA, 0.1 mM PMSF, and 2.5 pug/ml aprotinin.
After the centrifugation at 10,000¢ for 20 min,
supernatants were incubated with D-MCA for
60 min at 37°C. Caspase-3-like activities were
determined by monitoring the increased fluor-
escence intensities (excitation at 380 nm and
emission at 460 nm).

In Vitro Assay for Cytochrome c-Dependent
Activation of Caspase

In vitro assay for cytochrome c-dependent
activation of caspase-3 was essentially per-
formed as described [Liu et al., 1996]. Cytosolic
fraction (100 pg protein) was incubated with
10 pM horse-heart cytochrome c and 1 mM dATP
at 37°C for 1 h in a total volume of 100 ul. After
the incubation, the activation of caspase-3 was
analysed by a fluorogenic method.

Statistical Analysis

Data are expressed as mean + SEM. Statis-
tical differences between groups were deter-
mined using Tukey test. P < 0.05 was considered
significant.

RESULTS

IGF-1 Protects Peroxynitrite-Induced
Cell Death

We examined the effect of IGF-1 on peroxyni-
trite-induced cell death in SH-SY5Y cells. Cells
were treated with IGF-1 (0.1-10 nM) for 24 h in
the presence of 1 mM SIN-1. Cell death was
assessed using a trypan blue dye exclusion test.
Consistent with our previousreport [Saekiet al.,
2000], SIN-1 caused approximately 40% cell
death. Treatment with IGF-1 prevented SIN-1-
induced cell death in a concentration-dependent
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Fig. 1. Protection of SIN-T-induced cell death by IGF-1.
Indicated concentrations (0.1-10 nM) of IGF-1 were added to
the medium 30 min after the treatment of SIN-1 (1 mM). Cell
viability was calculated by the failure to exclude trypan blue
24 h after the SIN-1 treatment. Data are given as means = SEM
from three experiments. *, P<0.01 compared with that of
treatment with SIN-1 alone (0).

manner (Fig. 1). We also analysed DNA frag-
mentation of the cells treated with SIN-1 (1 mM)
by agarose gel electrophoresis. SH-SY5Y cells
showed DNA fragmentation by SIN-1 treat-
ment (Fig. 2). Simultaneous addition of IGF-1
(10 nM) inhibited the DNA fragmentation.

Protection of Cell Death by IGF-1
is PI3-Kinase-Dependent

To determine whether the effect of IGF-1
involves the PI3-kinase pathway, we tested the
effect of wortmannin, an inhibitor of PI3-kinase,
on the protection of cell death by IGF-1. Simul-
taneous treatment of SH-SY5Y cells with IGF-1
(10 nM) and wortmannin (100 nM) inhibited the
protective effect of IGF-1 on SIN-1-induced cell
death (Fig. 3A). Wortmannin alone had neither
effect on the survival of SH-SY5Y cells nor SIN-
1-induced cell death. Similar results were ob-
tained with another inhibitor of PI3-kinase,
LY294002 (Fig. 3B). Akt, a serine/threonine ki-
nase, is a downstream effector of PI3-kinase,
and phosphorylated by PI3-kinase. Thus, we
assessed the extent of phosphorylation of Akt on
Ser-473, which is thought to reflect Akt activa-
tion. SH-SY5Y cells were treated with 10 nM
IGF-1 for 15 min and the phosphorylation of Akt
was evaluated using specific antibody that
recognizes Akt phosphorylated at Ser-473.
Treatment with 10 nM IGF-1 induced the phos-
phorylation of Akt, which was abolished by 100
nM wortmannin (Fig. 4A) or 10 nM LY294002
(Fig. 4B).
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Fig. 2. Agarose gel electrophoresis of DNA fragmentation.
Twenty-four hours after SIN-1 (1 mM) treatment, cells were
collected. IGF-1 (10 nM) was added to the medium 30 min after
the addition of SIN-1. Lane 1, control; Lane 2, T mM SIN-1;
Lane 3, TmM SIN-1 plus 10 nM IGF-1. Control indicates cells
treated with vehicle.
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IGF-1 Inhibits Caspase-3-Like
Protease Activation Induced by SIN-1

The caspase family has been suggested to play
an important role in neuronal cell death. We
investigated whether caspase-3 is involved in
peroxynitrite-induced cell death. Exposure of
the cellsto 1 mM SIN-1 increased caspase-3-like
protease activity in a time-dependent manner
(Fig. 5A). Maximal activity was detected at 24 h
after the SIN-1 treatment. D-FMK (100 uM), an
inhibitor of caspase-3, completely inhibited the
increase in caspase-3-like protease activity
induced by SIN-1 (Fig. 56B). We also examined
effects of IGF-1 on SIN-1-induced activation of
caspase-3. IGF-1 partially prevented the in-
crease in caspase-3-like protease activity
induced by SIN-1, and the effect of IGF-1 was
completely inhibited by 100 nM wortmannin
(Fig. 5B). During the activation of procaspase-3
with proteolysis, two fragments of p20 and p17
are produced. To confirm the activation of
caspase-3, we used specific antibody against
the fragments for immunoblotting analysis. The
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Fig. 3. Blockade of protective effect of IGF-1 by PI3-kinase
inhibitors. IGF-1 (10 nM) and wortmannin (A, Wo, 100 nM) or
LY294002 (B, LY, 10 nM) were added to the medium 30 min
after the treatment of SIN-1 (1 mM). Cell viability was calculated
24 h after the SIN-1 treatment. Data are given as means & SEM
from three experiments from three experiments. *, P<0.01
compared with that of treatment with SIN-1 alone. *, P<0.01
compared with that of treatment with SIN-1 plus IGF-1.

p20 and p17 bands were present in the lysate of
SH-SY5Y cells treated with SIN-1, and were
reduced when treated with IGF-1 (Fig. 5C). To
address whether caspase-3 contributes to SIN-
1-induced cell death, we examined the effect of
D-FMK on SIN-1-induced cell death. D-FMK
(100 uM) partially prevented SIN-1-induced cell
death (Fig. 6). Moreover, V-FMK (50 uM), a non-
specific-caspase inhibitor, completely preven-
ted SIN-1-induced cell death.

IGF-1 Does Not Reduce Cytochrome ¢
Release Induced by SIN-1

During apoptosis, an important pathway
leading to the activation of caspases is the
release of cytochrome ¢ from the mitochondria.
Cytochrome c release was analysed in the
cytosolic fraction obtained from SH-SY5Y cells
24 h after SIN-1 (1 mM) treatment. Figure 7A
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Fig. 4. Phosphorylation of Akt by IGF-1. Thirty minutes after
pre-incubation with wortmannin (A, Wo, 10, 100 nM) or
LY294002 (B, LY, 10, 30 nM), cells were treated with IGF-1 (10
nM) for 15 min. Control indicates cells treated with vehicle.
Total cell lysates were subjected to SDS—PAGE and immuno-
blotted with antibody that recognizes serine-473 phosphory-
lated Akt. A given immunoblot is a representative of three
independent experiments.

shows that SIN-1 increased the amount of
cytochrome c in the cytosolic fraction. D-FMK
(100 pM) was ineffective in preventing the
release of cytochrome ¢, indicating that cyto-
chrome c release is upstream of caspase-3 acti-
vation. As shown in Figure 7B, IGF-1 had no
effect on the release of cytochrome ¢ in SIN-1
treated SH-SY5Y cells. Since cytochrome c¢
oxidase subunitII, an inner mitochondrial mem-
brane protein, was not detected in the cytosolic
fractions, there was no contamination of intact
mitochondria in the prepared cytosolic fraction
(data not shown).

IGF-1 Inhibits Cytochrome c-Induced
Activation of Caspase-3

To confirm whether IGF-I inhibits cyto-
chrome c-induced activation of caspase-3, we
performed in vitro experiments using cytosolic
fractions prepared from IGF-1-treated or non-
treated cells. As reported previously [Liu et al.,
1996], addition of cytochrome ¢ and dATP to
the cytosolic fractions obtained from non-trea-
ted cells resulted in caspase-3-like activation
(Fig. 8A). However, caspase-3-like activation
was reduced in IGF-1-treated cytosolic frac-
tions. We also analysed the proteolytic proces-
sing of pro-caspase-3 by immunoblotting. By the
addition of cytochrome c and dATP, the p20 and
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Fig. 5. Inhibition of SIN-T-induced caspase-3 activation by
IGF-1. A: At the indicated time after SIN-1 (1 mM) treatment,
cells were collected. Cell lysate (25 pg protein) was incubated
with D-MCA for 60 min at 37°C. Caspase-3-like protease
activity was determined by cleavage of fluorogenic substrate.
The proteolytic activity at time 0 is defined as 100%. Data from
three different experiments are presented. B: IGF-1 (10 nM) with
or without wortmannin (Wo, 100 nM) were added to the
medium 30 min after the treatment of SIN-1 (1 mM). D-FMK
(100 uM) was added to the medium 30 min before the SIN-1
treatment. Caspase-3-like protease activity was determined by
cleavage of fluorogenic substrate 24 h after the SIN-1 treatment.
The proteolytic activity of a lysate from cells treated with vehicle
is defined as 100%. *, P< 0.05; **, P< 0.01 compared with that
of treatment with SIN-1. *, P<0.05 compared with that of
treatment with SIN-1 plus IGF-1. C: Total cell lysates 24 h after
the SIN-1 addition were subjected to immunoblotting with
antibody to cleaved products of procaspase-3. Control indicates
cells treated with vehicle. A given immunoblot is a representa-
tive of three independent experiments. Arrows indicate the
positions of cleaved products of procaspase-3 (p20 and p17).
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Fig. 6. Protection of SIN-1-induced cell death by caspase
inhibitors. V-FMK (50 uM) or D-FMK (100 uM) was added to the
medium 30 min before the treatment of SIN-1 (1 mM). Cell
viability was calculated 24 h after the SIN-1 treatment. Data are
given as means + SEM from three experiments. *, P<0.05; **,
P<0.01 compared with that of treatment with SIN-1.

pl7 bands appeared in the cytosolic fractions
obtained from non-treated cells, and were re-
duced in the fractions from cells treated with
IGF-1 (Fig. 8B). Taken together, these findings
demonstrate that IGF-1 inhibits cytochrome c-
induced activation of caspase-3 downstream of
cytochrome c release.

A

IGF-1 Does not Affect the Expression
Levels of Bcl-2

One possible mechanism by which IGF-1
protects SIN-1-induced cell death is to increase
the amount of endogenous Bel-2. We conducted
immunoblot analysis of cells treated with or
without IGF-1 using anti-Bcl-2 antibody. There
was no difference between the protein amounts
of Bcl-2 in IGF-1 treated and non-treated cells
(Fig. 9).

DISCUSSION

In this study, we showed that IGF-1 pre-
vented peroxynitrite-induced cell death. IGF-1
is a well-established neuronal mitogen. A key
role of IGF-1 in brain development has been
shown in vivo using knockout mice [D’Ercole
et al., 1996]. In addition to its mitogenic effect,
recent evidence suggests that IGF-1 is also a
survival factor for neurons. Serum withdrawal
induces apoptosis in many types of cultured neu-
ronal cells. For example, several neuroblastoma
cell lines such as NG108 cells and NB 2a cells
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Fig. 7. Cytochrome c release induced by SIN-1. D-FMK (A, 100 uM) was added to the medium 30 min
before the treatment of SIN-1 (1 mM). IGF-1 (B, 10 nM) was added to the medium 30 min after the treatment
of SIN-1. Cytosolic fraction 24 h after the SIN-1 addition was subjected to immunoblotting with antibody to
cytochrome c. Control indicates cells treated with vehicle. A given immunoblot is a representative of three

independent experiments.
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Fig. 8. In vitro activation of caspase-3 by cytochrome c. After
the incubation with or without 10 pM cytochrome ¢ for 60 min
at 37 °C, cytosolic fractions (100 pg protein) prepared from
cells treated with IGF-1 or without IGF-1 were analysed by
fluorogenic method (A) or immunoblotting with antibody to
cleaved products of procaspase-3 (B). A: The proteolytic activity
of IGF-1-treated cells (no addition of cytochrome ¢) is defined as
1 arbitrary unit. Data are given as means=SEM from three
experiments. *, P<0.01 compared with that of cytochrome ¢
added-fraction from IGF-1-non-treated cells. B: A given
immunoblot is a representative of three independent experi-
ments. Arrows indicate the positions of cleaved products of
procaspase-3 (p20 and p17).
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Fig. 9. Effectof IGF-1 onthe expression of Bcl-2. IGF-1 (10 nM)
was added to the medium 30 min after the addition of SIN-1 (1
mM). Total cell lysates 24 h after the SIN-1 addition were
subjected to immunoblotting with antibody to Bcl-2. Control
indicates cells treated with vehicle. A given immunoblot is a
representative of three independent experiments.

undergo apoptosis when switched to serum-free
medium [Solovyanetal.,1998; Yanoetal., 1998].
In this study, however, serum-free conditions
did not induce death of SH-SY5Y cells. This is
consistent with previous report [Matthews and
Feldman, 1996].

PI3-kinase hasbeen shown to be implicated in
the signaling of IGF-1-mediated cell survival.
PI3-kinase is a heterodimer of a regulatory sub-
unit and a catalytic subunit [Carpenter et al.,
1990]. Wortmannin is a fungal toxin that
covalently binds to and blocks the activity of
the catalytic subunit [Arcaro and Wymann,
1993; Kimura et al., 1994]. Consistent with
findings from the experiments using other cells
[Yao and Cooper, 1995; Parrizas et al., 1997],
wortmannin blocked the ability of IGF-1 to
protect SH-SY5Y cells against peroxynitrite-
induced cell death. To confirm our finding that
PI3-kinase is involved in IGF-1-mediated cell
survival, we used another specific inhibitor of
PI3-kinase, 1L.Y294002. LY294002 is a synthetic
bioflavonoid that reversibly binds to and inhi-
bits the catalytic subunit [Vlahos et al., 1994].
LY294002 showed similar blocking effects on
IGF-1-evoked inhibition of cell death, indicating
that IGF-1 prevents peroxynitrite-induced cell
death via PI3-kinase activation.

The effect of PI3-kinase istransmitted through
its production of phosphatidylinositol 3,4-bis-
phosphate and phosphatidylinositol 3,4,5-tris-
phosphate, which results in activation of Akt.
We assessed the extent of phosphorylation of
Akt on serine-473, which is thought to reflect
Akt activation [Alessi et al., 1996]. The phos-
phorylation of Akt was inhibited by wortmannin
or LY294002. Taken together, these results sug-
gest that IGF-1 protects peroxynitrite-induced
cell death via the activation of PI3-kinase/Akt
pathway.

In neurons, there is considerable evidence
that caspase-3 plays an important role for cell
death in response to ischemia and excitotoxicity
[Namuraet al., 1998; Tenneti and Lipton, 2000].
It has been reported that NO induces neuronal
apoptosis via caspase-3-like activation [Tama-
tani et al., 1998b]. Peroxynitrite-induced cell
death may be a mixture of apoptosis and necro-
sis. In fact, DNA ladder pattern was not clear
when DNA was isolated from SIN-1-treated
cells. When DNA was isolated from HyO,-
treated cells, ladder pattern was clear. A broad-
spectrum caspase inhibitor (50 uM) completely
prevented SIN-1-induced cell death whereas
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a specific caspase-3 inhibitor, used at a 2-fold
higher dose, only partially prevented cell death,
suggesting that in addition to caspase-3, other
caspases may also be involved in peroxynitrite-
induced cell death.

It has been shown that the release of cyto-
chrome c¢ from the mitochondria results in the
formation of Apaf-1 and caspase-9, and subse-
quently activates caspase-3 [Kluck et al., 1997,
Yang et al., 1997; Zou et al., 1997]. The exact
mechanism how cytochrome c is released during
peroxynitrite-induced cell death remains un-
known. The Bcl-2 family member Bax has been
reported to regulate cytochrome c¢ release
[Hsu et al., 1997]. It has also been reported
that Bax mediates NO-induced cell death in
SH-SY5Y cells [Ghatan et al., 2000]. In this
study, IGF-1 prevented caspase activation, but
failed to prevent the release of cytochrome c
induced by peroxynitrite, suggesting that IGF-1
inhibits cell death downstream of cytochrome c
release. Similar findings are reported in
cerebellar neurons or motor neurons where
IGF-1 protected cell death without inhibiting
cytochrome c release [Gleichmann et al., 2000;
Zhou et al., 2000].

Recent studies suggest a possible link be-
tween the effects of IGF-1 and Bcl-2 on cell
death. For example, in a neuronal hyperosmotic
stress model, cell death was blocked by IGF-1
receptor activation, and this effect was asso-
ciated with the increased expression of Bcl-2
[Singleton et al., 1996; Golen et al., 2000].
Matsuzaki et al. [1999] also reported that IGF-
1 inhibits NO-induced apoptosis by modulating
NO-induced changes in Bcl-2 expression. The
primary site of action of Bcl-2 appears to be in
the mitochondria because its overexpression
inhibits the release of cytochrome ¢ [Kluck et al.,
1997; Yang et al., 1997]. However, we observed
that IGF-1 did not affect the expression levels of
Bel-2. This result suggests that IGF-1 may
prevent peroxynitrite-induced cell death
through a mechanism that is independent of
Bcl-2 induction.

Recent studies suggest that in certain cell
types including neurons, there may be a post-
mitochondrial mechanism to inhibit cell death.
For example, it has been reported that Hsp70
inhibits apoptosis downstream of cytochrome ¢
release without preventing cytochrome c redis-
tribution [Xanthoudakis and Nicholson, 2000].
Inhibitors of apoptosis proteins (IAPs), identi-
fied in the genome of baculovirus, are also

reported to regulate the cytochrome c-mediated
caspase activation. IAPs suppress apoptosis by
preventing the proteolytic processing of pro-
caspase and inhibiting the enzymatic activity of
mature caspases [Deveraux and Reed, 1999].
Several mammalian IAPs including XIAP, c-
IAP1, c-IAP2, and survivin have been identified.
In addition, it has been reported that the ability
of microinjected cytochrome c to trigger apop-
tosis depends on other signals induced by nerve
growth factor (NGF) [Deshmukh and Johnson,
1998]. Although the molecular basis is not clear,
it is hypothesized that growth factors including
IGF-1 may induce or activate anti-apoptotic
proteins such as IAPs and inhibit caspase
activation in SH-SY5Y cells.

In conclusion, our data indicate that IGF-1
inhibits peroxynitrite-induced cell death down-
stream of cytochrome c release. The ability of
IGF-1 to regulate cell death may provide a
potential molecular mechanism preventing
neuronal cells death induced by an accidental
leakage of cytochrome ¢ from the mitochondria.
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